MATH 20D Spring 2023 Lecture 10.
 Conjugate roots, Free Mechanical Vibrations

Outline

(1) More on the case of complex roots

(2) Free Mechanical Vibrations

Announcements

- Solutions to homework two are available in Canvas
- Midterm in Lecture this Wednesday.
- Students are permitted one double sided page of handwritten notes as well as a scientific calculator.
- Midterm review problem set is available in Canvas. Solutions available upon request in Zulip
- The lecturer is confident that students who have studied the lecture examples and completed homeworks 1,2 and 3 will succeed on the midterm.
- In the interest of saving paper, students will not be provided with a table of standard integrals. The integrals on the exam do not require any techniques of integration beyond u substituition. Students are expected to know the antiderivatives of $\sin (x), \cos (x), e^{x}$ and $1 / x$.

Contents

(1) More on the case of complex roots
(2) Free Mechanical Vibrations

Polar Representations

Theorem

Let $a \neq 0, b$, and c be constants such that $b^{2}-4 a c<0$ and define

$$
\begin{equation*}
y(t)=C_{1} e^{\alpha t} \cos (\beta t)+C_{2} e^{\alpha t} \sin (\beta t) . \tag{1}
\end{equation*}
$$

where $\alpha \pm i \beta$ are the roots to the equation $a r^{2}+b r+c=0$.

Polar Representations

Theorem

Let $a \neq 0, b$, and c be constants such that $b^{2}-4 a c<0$ and define

$$
\begin{equation*}
y(t)=C_{1} e^{\alpha t} \cos (\beta t)+C_{2} e^{\alpha t} \sin (\beta t) \tag{1}
\end{equation*}
$$

where $\alpha \pm i \beta$ are the roots to the equation $a r^{2}+b r+c=0$. Then (1) can be rewritten in the form

$$
y(t)=A e^{\alpha t} \sin (\beta t+\phi)
$$

where $A=\sqrt{C_{1}^{2}+C_{2}^{2}}$ and $\phi \in[0,2 \pi)$ satisfies $C_{1}=A \sin (\phi)$ and $C_{2}=A \cos (\phi)$.

Polar Representations

Theorem

Let $a \neq 0, b$, and c be constants such that $b^{2}-4 a c<0$ and define

$$
\begin{equation*}
y(t)=C_{1} e^{\alpha t} \cos (\beta t)+C_{2} e^{\alpha t} \sin (\beta t) \tag{1}
\end{equation*}
$$

where $\alpha \pm i \beta$ are the roots to the equation $a r^{2}+b r+c=0$. Then (1) can be rewritten in the form

$$
y(t)=A e^{\alpha t} \sin (\beta t+\phi)
$$

where $A=\sqrt{C_{1}^{2}+C_{2}^{2}}$ and $\phi \in[0,2 \pi)$ satisfies $C_{1}=A \sin (\phi)$ and $C_{2}=A \cos (\phi)$.

Example

The IVP $\frac{1}{8} y^{\prime \prime}+16 y=0, y(0)=1 / 2, y^{\prime}(0)=-\sqrt{2}$ admits the solution

$$
y_{\mathrm{sol}}(t)=\frac{1}{2} \cos (8 \sqrt{2} t)-\frac{1}{8} \sin (8 \sqrt{2} t) .
$$

Determine values of $A>0$ and $\phi \in[0,2 \pi)$ so that $y_{\mathrm{sol}}(t)=A \sin (8 \sqrt{2} t+\phi)$

Contents

(1) More on the case of complex roots

(2) Free Mechanical Vibrations

The Mass Spring System

- An object of mass m is attached to a wall via a spring and placed on a table.

The Mass Spring System

- An object of mass m is attached to a wall via a spring and placed on a table. Let $b \geqslant 0$ denote the coefficient of friction of the surface.

The Mass Spring System

- An object of mass m is attached to a wall via a spring and placed on a table. Let $b \geqslant 0$ denote the coefficient of friction of the surface. Let $k>0$ denote the constant measuring the stiffness of the spring.

The Mass Spring System

- An object of mass m is attached to a wall via a spring and placed on a table. Let $b \geqslant 0$ denote the coefficient of friction of the surface. Let $k>0$ denote the constant measuring the stiffness of the spring.
- At time $t=0$ the mass is displaced y_{0} units and released with velocity v_{0}.

The Mass Spring System

- An object of mass m is attached to a wall via a spring and placed on a table. Let $b \geqslant 0$ denote the coefficient of friction of the surface. Let $k>0$ denote the constant measuring the stiffness of the spring.
- At time $t=0$ the mass is displaced y_{0} units and released with velocity v_{0}.
- If $y(t)$ denotes the displacement of the mass at time t relative to the spring equilibrium then $y(t)$ solves the IVP

$$
m y^{\prime \prime}(t)+b y^{\prime}(t)+k y(t)=0, \quad y(0)=y_{0}, \quad y^{\prime}(0)=v_{0} .
$$

The Mass Spring System

- An object of mass m is attached to a wall via a spring and placed on a table. Let $b \geqslant 0$ denote the coefficient of friction of the surface. Let $k>0$ denote the constant measuring the stiffness of the spring.
- At time $t=0$ the mass is displaced y_{0} units and released with velocity v_{0}.
- If $y(t)$ denotes the displacement of the mass at time t relative to the spring equilibrium then $y(t)$ solves the IVP

$$
m y^{\prime \prime}(t)+b y^{\prime}(t)+k y(t)=0, \quad y(0)=y_{0}, \quad y^{\prime}(0)=v_{0} .
$$

The solution to the above IVP is called the Equation of Motion for the mass.

The Mass Spring System

- An object of mass m is attached to a wall via a spring and placed on a table. Let $b \geqslant 0$ denote the coefficient of friction of the surface. Let $k>0$ denote the constant measuring the stiffness of the spring.
- At time $t=0$ the mass is displaced y_{0} units and released with velocity v_{0}.
- If $y(t)$ denotes the displacement of the mass at time t relative to the spring equilibrium then $y(t)$ solves the IVP

$$
m y^{\prime \prime}(t)+b y^{\prime}(t)+k y(t)=0, \quad y(0)=y_{0}, \quad y^{\prime}(0)=v_{0} .
$$

The solution to the above IVP is called the Equation of Motion for the mass.

Theorem

When $b^{2}-4 m k<0$, the equation of motion of the mass takes the form

$$
y(t)=A e^{\alpha t} \sin (\beta t+\phi)
$$

where $\alpha=-b / 2 m \leqslant 0$ and $\beta=\sqrt{4 m k-b^{2}} / 2 m$.

The Mass Spring System

- An object of mass m is attached to a wall via a spring and placed on a table. Let $b \geqslant 0$ denote the coefficient of friction of the surface. Let $k>0$ denote the constant measuring the stiffness of the spring.
- At time $t=0$ the mass is displaced y_{0} units and released with velocity v_{0}.
- If $y(t)$ denotes the displacement of the mass at time t relative to the spring equilibrium then $y(t)$ solves the IVP

$$
m y^{\prime \prime}(t)+b y^{\prime}(t)+k y(t)=0, \quad y(0)=y_{0}, \quad y^{\prime}(0)=v_{0} .
$$

The solution to the above IVP is called the Equation of Motion for the mass.

Theorem

When $b^{2}-4 m k<0$, the equation of motion of the mass takes the form

$$
y(t)=A e^{\alpha t} \sin (\beta t+\phi)
$$

where $\alpha=-b / 2 m \leqslant 0$ and $\beta=\sqrt{4 m k-b^{2}} / 2 m$. Hence if $b>0$ then the mass oscillates with a decaying amplitude given the damping factor $A e^{\alpha t}$.

An Example of Damped Oscillation

Example

- A $1 / 4 \mathrm{~kg}$ mass is attached to a spring with stiffness coefficient $4 \mathrm{~N} / \mathrm{m}$.

An Example of Damped Oscillation

Example

- A $1 / 4 \mathrm{~kg}$ mass is attached to a spring with stiffness coefficient $4 \mathrm{~N} / \mathrm{m}$.
- The coefficient of friction for the system is $1 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$.

An Example of Damped Oscillation

Example

- A $1 / 4 \mathrm{~kg}$ mass is attached to a spring with stiffness coefficient $4 \mathrm{~N} / \mathrm{m}$.
- The coefficient of friction for the system is $1 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$.
- The mass is displaced $1 / 2 \mathrm{~m}$ to the left and given an initial velocity of 1 $\mathrm{m} / \mathrm{sec}$ to the left.

An Example of Damped Oscillation

Example

- A $1 / 4 \mathrm{~kg}$ mass is attached to a spring with stiffness coefficient $4 \mathrm{~N} / \mathrm{m}$.
- The coefficient of friction for the system is $1 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$.
- The mass is displaced $1 / 2 \mathrm{~m}$ to the left and given an initial velocity of 1 $\mathrm{m} / \mathrm{sec}$ to the left.
(a) Find the equation of motion for the mass. Express your solution in the form

$$
y(t)=A e^{\alpha t} \sin (\beta t+\phi)
$$

where $A>0$ and $\phi \in[0,2 \pi)$.

An Example of Damped Oscillation

Example

- A $1 / 4 \mathrm{~kg}$ mass is attached to a spring with stiffness coefficient $4 \mathrm{~N} / \mathrm{m}$.
- The coefficient of friction for the system is $1 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$.
- The mass is displaced $1 / 2 \mathrm{~m}$ to the left and given an initial velocity of 1 $\mathrm{m} / \mathrm{sec}$ to the left.
(a) Find the equation of motion for the mass. Express your solution in the form

$$
y(t)=A e^{\alpha t} \sin (\beta t+\phi)
$$

where $A>0$ and $\phi \in[0,2 \pi)$.
(b) Determine when the mass first returns to it's equilibrium.

An Example of Damped Oscillation

Example

- A $1 / 4 \mathrm{~kg}$ mass is attached to a spring with stiffness coefficient $4 \mathrm{~N} / \mathrm{m}$.
- The coefficient of friction for the system is $1 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$.
- The mass is displaced $1 / 2 \mathrm{~m}$ to the left and given an initial velocity of 1 $\mathrm{m} / \mathrm{sec}$ to the left.
(a) Find the equation of motion for the mass. Express your solution in the form

$$
y(t)=A e^{\alpha t} \sin (\beta t+\phi)
$$

where $A>0$ and $\phi \in[0,2 \pi)$.
(b) Determine when the mass first returns to it's equilibrium.
(c) Calculate the magitude of the maximum displacement to the left that the mass will attain.

An Example of Damped Oscillation

Example

- A $1 / 4 \mathrm{~kg}$ mass is attached to a spring with stiffness coefficient $4 \mathrm{~N} / \mathrm{m}$.
- The coefficient of friction for the system is $1 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$.
- The mass is displaced $1 / 2 \mathrm{~m}$ to the left and given an initial velocity of 1 $\mathrm{m} / \mathrm{sec}$ to the left.
(a) Find the equation of motion for the mass. Express your solution in the form

$$
y(t)=A e^{\alpha t} \sin (\beta t+\phi)
$$

where $A>0$ and $\phi \in[0,2 \pi)$.
(b) Determine when the mass first returns to it's equilibrium.
(c) Calculate the magitude of the maximum displacement to the left that the mass will attain.

